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Abstract

This work studies the transient behavior of the laminar mixed convection in micropolar fluid flow over a vertical
wavy surface. Effects of micropolar parameters and wavy geometry on the transient skin friction coefficient and Nusselt
number are examined. Results show that the transient skin-friction coefficient and heat transfer rate show a mixture of
two harmonics. Forced convection dominates the first harmonic at smaller time or near the leading edge, while free
convection dominates the second harmonic as the time increases and fluid moves downstream. As the vortex viscosity
increases the Nusselt number decreases, thus micropolar fluids have smaller heat transfer rates. © 2001 Elsevier Sci-

ence Ltd. All rights reserved.
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1. Introduction

The theory of micropolar fluid can be used to explain
the flow behavior of non-Newtonian fluids, such as
colloidal fluids, polymeric fluids, animal blood and real
fluids with suspensions. This theory, first formulated by
Eringen [1], could deal with viscous fluids where the
microconstituents are rigid and spherical or randomly
oriented. It has received much attention in recent years.
An excellent review about micropolar fluids was pro-
vided by Ariman et al. [2,3].

It is necessary to study the heat transfer from irregular
surfaces because irregular surfaces are often present in
many applications. Surfaces are sometimes intentionally
roughened to enhance heat transfer. Mixed convection
from wavy surfaces can be used for transferring heat in
several heat transfer devices, such as flat-plate solar col-
lectors and flat-plate condensers in refrigerators. The
presence of roughness elements disturbs the flow pass
surfaces and alters the heat transfer rate. Previous studies
about the mixed convection of micropolar fluid flows have
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focused mainly on a flat plate [4]. Few studies have con-
sidered the effects of complex geometries on heat con-
vection in micropolar fluids, including the flows along a
convex surface [5] and Stretching Sheet [6]. Yao [7-9] first
studied the natural convection flow of Newtonian fluid
along a vertical wavy surface using an extended Prandtl’s
transposition theorem and a finite-difference scheme. Pop
et al. [10,11] investigated the free convection along a
vertical wavy surface in a porous medium and natural
convection of a Darcian fluid about a wavy cone. And
recently, Pop et al. [12,13] studied the transient conjugate
free convection from a vertical plate subjected to a change
in surface heat flux in porous media by an explicit finite-
difference scheme. Chiu et al. [14,15] studied the transient
and steady-state natural convection along a vertical wavy
surface in micropolar fluids. They found that the fre-
quency of the local heat transfer rate and the skin friction
on the wall are twice that of the wavy surface irrespective
of whether the fluid is a Newtonian fluid or micropolar
fluid. About the mixed-convection along a vertical wavy
surface, Yao [16] showed that the forced-convection
component of the heat transfer contains two harmonics.
The amplitude of the first harmonic is proportional to the
amplitude of the wavy surface, and the natural-convec-
tion component is a second harmonic, with a frequency
twice that of the wavy surface.
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Nomenclature

a dimensionless amplitude of the wavy surface
B dimensionless material parameter (Eq. (2))
Cr skin friction coefficient

Gy specific heat of the fluid at constant pressure
g acceleration due to gravity

Gr Grashof number (Eq. (2))

h heat transfer coefficient

j micro-inertia density

K thermal conductivity

L wavy length

N dimensionless microrotation

Nug, Nuy,, local Nusselt number, and mean Nusselt
number, respectively

p pressure

Pr Prandtl number

R dimensionless micropolar parameter (Eq.

(2)

generalized Reynolds number

surface geometry function

temperature

time

x and y velocity components, respectively

x component of the velocity of the inviscid

flow, evaluated at the surface

Num

o=
Y

X,y axial and transverse (Cartesian)
coordinates, respectively

Greek symbols

o wavy amplitude-wavelength ratio
A material parameter (y/ju)
g distance measured along the surface from
the leading edge
0 dimensionless temperature
u dynamic viscosity
V3 microrotation component
p coefficient of thermal expansion
Y spin gradient viscosity
density of fluid
T dimensionless time

Superscripts
— dimensional quantity
~, N non-dimensional quantity

! derivative with respect to x

Subscripts

m mean value

X local value

w surface conditions

00 conditions far away from the surface

The above literature survey shows that the transient
mixed convection along a vertical wavy surface, especially
in micropolar fluids, has not been studied so far. In this
paper we analyze the transient mixed convection in mi-
cropolar fluid flows over a vertical wavy surface using
Prandtl’s transposition theorem and the spline alternat-
ing-direction implicit method. The gradient boundary
conditions can be represented more accurately, and ir-
regular boundaries are easier to deal with. This is because
the spline alternating-direction implicit method can
directly evaluate the spatial derivative terms without any
finite-difference discretization. The analysis needs to
know the inviscid flow along the wavy surface and the
inviscid solution obtained in this paper is valid only for
small values of the amplitude-wavelength ratio. We
examine the effects of micropolar parameters and wavy
geometry on the profiles of velocity, temperature, micro-
rotation, skin-friction coefficient and Nusselt number.
Results obtained are also compared with the corre-
sponding flow in Newtonian fluids.

2. Mathematical formulation

Consider a wavy surface, having a cusped leading edge
as shown in Fig. 1. The axis of symmetry is aligned with
the oncoming uniform stream. The wavy surface is de-
scribed by S(x) = asin’(nx/L), where ais the amplitude of

the wavy surface. We assume that the temperature of the
wavy surface is held at a constant value Ty, which is higher
than the ambient fluid temperature 7,,. Moreover, the
micropolar fluid flow is consider to be transient, laminar
and two-dimensional. The governing equations can be
written under the Boussinesq approximation as
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Fig. 1. Physical model, coordinates and grid system.
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The initial condition is

t=0:7%75,0)=0, a(x,50) =0, (750 =

(1f)
Moreover, the associate boundary conditions are

() Aty=8F), t>0:T=T,, i=0=0, v;=0,

(1g)

(2) Aty —o0, t>0:T=T,, i=Uy(x),

1h
v3 =0, ﬁ:ﬁx@)- ( )

Note that u and v are the components of the velocity
along the x, y directions. 7T, p, and g are the temperature,
pressure and gravitational constant. p,  and f are the
density, viscosity and thermal expansion coefficient of
fluid. j, k¥ and y are the micro-inertia density, vortex
viscosity and spin-gradient viscosity. Further, K; and C,
are the thermal conductivity and specific heat of the fluid
at constant pressure. v; is the component of microrota-
tion whose direction of rotation is in the (x—y) plane.
U, (x) is the ¥ component of the inviscid velocity at the
surface y = §(x).

Note that in Eq. (1g), the boundary condition for the
microrotation at the fluid-solid interface is v; = 0, the
condition of zero spin, as used by Takhar [6].

The dimensionless variables are defined as
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Substitution of Eq. (2) into Egs. (1a)—(le) yields
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Using Prandtl’s transposition theorem, we can trans-
form the irregular wavy surface into a flat surface [8].
The transformed equations are
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F=% P=0F-SE)R?, t=%a=4q, )
o= (i —Su)Re'?, N=NRe'? p=p—p,

Eq. (4c) indicates that dp/07 is O(Re™'/?). This im-
plies that the 0p/0x can be determined from the inviscid
flow in the outside of the boundary layer. It can be ex-
pressed as:

20

% +SHULU, +8'S"U;. (6)

Elimination of 0p/0y between Egs. (4b) and (4c¢) yields

i oa o 1 (G o .
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Here, we defined the following variables

~1/2 -1
. 2% o 2x
xX=2x =7 — T=1( —
y Y=Y U, ) U, )
. R 1/2 . 1/2
- U_ﬁ(%> , N_A<U£W> R

The boundary layer Egs. (4a), (4d), (4e) and (7) in (x,y)
coordinates are
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The corresponding initial and boundary conditions are:

1=0:0=0, u=0, N=0, (%)
y=0, 1>0:0=1, u=v=0, N=0, (9f)
y—o00, t>0:0=0, u=1, N=0. (9g)

The potential-flow solution for x-component of the
velocity on the surface y = S(x) can expressed as [16]

Uw(x)=1+%/ fl()d t+0(c). (10a)

Removing the singular point of the integral by the res-
idue theorem yields

Uy(x)=1+a [ — mcos(2nx) + / sm(f;t) dt}
0 X

+0(?). (10b)
The local Nusselt number is defined as:

_ hx  (—0T/dn)x
K Ty—T, '

oT oT\? oT\?
a6

Here 0/0n represents the differentiation with respect to
the coordinate normal to the surface. The axial distri-
bution of (4/Grs)"*Nuz can be obtained from

4\ Gr\ 4 2 1/2 00
(er) Nu;c = 7(R762> [(1 +S )Uw} 5 y:().

(I1lc)

(I1a)

The mean Nusselt number is defined as:
Nuy, = ——. (12a)

We can calculate the value of (4/Gr;)"*Nu; from
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The shear force at the surface is

ou oo ou
Tw = |U| z=+== | + K| 5=+ 03
dy Ox )y

Finally the skin-friction coefficient C¢ can be defined as

(13a)

7=5(x)

21y

Cr=—s.
TS0z

(13b)

Substitution of Eq. (13a) into Eq. (13b) and ignoring the
small order terms yields

Gr - Gr 14 1/ Gr -4
(R_) (4—) Cfo(EzX) (2+R)
x U*(1 —S’Z)Z—z. (13¢)

3. Numerical method

The dimensionless governing differential Eqs. (9a)—
(9¢) combined with the relevant boundary conditions

Table 1

Eqgs. (9¢)-(9g) are solved numerically by the spline al-
ternating-direction implicit method [18,19], an im-
proved version of the cubic spline collocation method
[17]. Numerical experiments were carried out to ensure
the independence of the results on the grid spacing and
time step size. Table 1 presents the results of the local
Nusselt number and local skin-friction coefficient. The
difference between results for spatial grids of 250 x 50
and 500 x 125 is less than 0.07% in the local Nusselt
number and the local skin-friction coefficient for
Pr=1.0,0=0.1,Gr/Re* = 20m, x € [0,4] and y € [0, 8].
The difference between results for At =0.01 and
At =0.001 is less than 0.2% in the transient local
Nusselt number and the transient skin-friction coeffi-
cient, when a non-uniform 250 x 50 grid is used.
Therefore, we employ a time interval At = 0.01 and a
non-uniform grid (250 x 50) to calculate the results.
Smaller spacing mesh points are used in the neigh-
borhood of the fluid-solid boundary in y direction, as
well as near the leading edge in x direction, as shown in
Fig. 1.

Using the spline alternating-direction implicit
method, we can express Egs. (9a)-(9g) as

ot = Fy 4 Gyl 4 SyuM (14)

Here i and j refer to the computational nodes, and » is
the time step. Moreover, ¢ represents u, v, N and 0. m
and M are the first and second derivatives of ¢ with
respect to x and y, respectively. F;;, G;; and S;; are the
known coefficients evaluated at the previous time step,
as show in Table 2. Using cubic spline collocation

Comparison of 4/Gr;)1/4Nu; and (Gr/ReZ)’l(Gr/4x)l/4Cf for Pr=1.0,0=0.1,Gr/Re* =20m,R = 0, x € [0,4],y € [0, 8]: (a) for dif-

ferent grid sizes; (b) for different time steps

4\ 14
Nt
(Gr)—() th

Gr\ "t rar\'*
<R—ez> (5) a

x=0.3 x=4 x=0.3 x=4

(a) Steady-state solutions: At = 0.01

250 x 25 0.583117 0.561775 1.121591 1.288961
250 x 50 0.583923 0.563652 1.118965 1.284000
250 x 125 0.584239 0.564578 1.118137 1.282617
125 x 50 0.585460 0.563947 1.117896 1.284542
250 x 50 0.583923 0.563652 1.118965 1.284000
500 x 125 0.583643 0.564079 1.119068 1.283798
250 x 50* 0.584834 0.563722 1.120845 1.283808
250 x 50° 0.599158 0.604465 1.119762 1.273850
(b) Unsteady-state solution: grid sizes = 250 x 50,7 = 0.4

At = 0.001 0.583922 0.752781 1.118966 0.898207
At =0.010 0.583924 0.752782 1.118966 0.898219
At = 0.050 0.583925 0.752723 1.118968 0.897970
At =0.100 0.583927 0.752636 1.118974 0.895481

#Uniform grid (x direction).
® Uniform grid (y direction).
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Table 2
The value of F;, G;;, and S;;
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>

relations [17], we can express Eq. (14) in tridiagonal
form as

U¢n+l +B’j¢ﬂ+l + Clj¢;z+l _ ’j’ (15)

where ¢ represents u, v, N and 60, or its first two deriv-

atives. Eq. (15) can be easily solved by the Thomas al-

gorithm.
The numerical procedure is as follows.

1. Set the suitable boundary and initial conditions.

2. Solve the transient solution from the leading edge. At
every axial position, the inner iterations for conver-
gent solutions are performed in every time step until
the convergence criteria are satisfied, that

1
¢, — by
z+1
ij

<1x107°,

where ¢ refers to 0,u,v or N, and z denotes the
number of iterations.

3. Go back to step 2 to calculate the results for the next
time step. The solutions obtained are treated
as steady-state solutions when the criteria are satis-
fied, i.e.,
+1

¢:‘J - ¢71

+1
¢fnax

where n denotes the number of time steps.

<1x10°,

4. Results and discussion

Numerical results are obtained for the surface de-
scribed by S(%) = asin’(nx/L) or dimensionless
S(x) = asin®(nx) for amplitude-wavelength ratios of 0.1
and 0.2. The effects of governing physical parameters,
such as amplitude-wavelength ratios «, and material
parameters R are examined. The typical chosen values
are B=1,A=5,Pr =1 and Gr/Re* = 20n.

Results for Egs. (6) and (10b) are plotted in Fig. 2.
Fig. 2 shows that the flow accelerates along the portion
of the surface from trough to crest where the slop S’ is
positive, and it decelerates along the portion of the
surface from crest to trough where the slope S’ is neg-
ative. The x-component velocity of the inviscid flow U,
varies periodically along the surface with a cycle equal to
that of the wavy surface. Moreover, this velocity in-
creases with the amplitude-wavelength ratio. On the
other hand, Fig. 3 shows that the pressure gradient
distribution consists of a mixture of two harmonics. The
first harmonic has a frequency equal to that of the wavy
surface. The pressure gradient is negative in the regions
where the inviscid flow accelerates, and it becomes
positive in the regions where the flow decelerates. The
maximum and minimum values of the pressure gradient

L LT oSN T N T S
1 2 3 4

X

Fig. 2. Inviscid surface-velocity distribution and axial distri-
bution of dp/dx.
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Fig. 3. Transient axial velocity profiles (x = 2.75).

occur at the points of inflection of the wavy surface. The
pressure gradient increases with the amplitude-wave-
length ratio. The present results for the x-component
velocity of the inviscid flow and the pressure gradient are
in good agreement with those obtained by Yao [16].

To verify the accuracy of the computer program used
in this study, the steady-state results obtained for
Newtonian fluid (i.e., R = 0) along wavy surface have
been compared with those computed by Yao [16], as
shown in Fig. 10. A favorable agreement is observed for
the flow along a flat plate (« = 0). However, for the flow
along wavy surface, a smaller difference is found be-
tween the present results and those reported by Yao [16].
Note that the term 1 —xU, /U, is presented in Egs.
(9a)—(9d) in this study, but this term does not exist in the
report of Yao [16].

Figs. 3-6 display the results for the distribution of the
transient axial velocity component u, temperature 0,
normal velocity component v and microrotation N for
the case of Gr/Re®> =20m, a=0.1, A=5 x=275
(node), respectively. The axial velocity component and
temperature increase with time at a given transverse
position. These also show that the hydrodynamic and
thermal boundary layers increase with time, and
micropolar fluids have a thicker boundary layer than
Newtonian fluid under any time.

Fig. 3 shows that because of the influence of buoy-
ancy the axial velocity components of Newtonian and
micropolar fluids grow with time. In a mixed-convection
boundary layer, forced convection is the dominant mode
of heat transfer at start time. And the axial velocity in-
creases monotonically with time because of the cumu-
lative free convection effect. However, the axial velocity
component of micropolar fluid is smaller than that of
the Newtonian fluid for transient and steady state. Be-

09

o
[e2)

o
3

o
[)

D 05

steady state

o o o
N w b
o T T T T T

o
g

o

0.25 05 0.75 1 125 15

Fig. 5. Transient normal velocity profiles (x = 2.75).

cause increasing the micropolar parameter results in an
enhancement of the total viscosity in fluid flow, de-
creasing the axial velocity component.

Fig. 4 illustrates that the micropolar fluids have
larger transient temperature. The transient axial velocity
component of micropolar fluids is smaller than that of a
Newtonian fluid as showed in Fig. 3; the smaller the
axial velocity, the smaller the heat transfer rate. Because
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Fig. 6. Transient microrotation profiles (x = 2.75).

the temperature of the wavy surface is kept constant, the
temperature profile becomes higher for micropolar flu-
ids. This phenomenon reflects the fact that increasing
the micropolar parameter results in an enhancement
of the total viscosity in fluid flow, thus reducing the
velocity and heat transfer rate.

The transformation from forced to free convection
field can be seen more clearly in Fig. 5. As time is less
than 0.05, the influence of buoyancy term is smaller,
thus, the transient normal velocity component decreases
gradually with time and increases with x. When time is
larger than 0.1, buoyancy is the dominant mode, the
negative normal velocity component can be found near
y=1. It should be noticed that negative normal ve-
locity implies the direction is toward the surface, which
is not normal to the wavy surface but is normal to the
X-axis.

The transverse distribution of transient microrota-
tion is plotted in Fig. 6. The amplitude of transient
microrotation increases monotonically with time at the
same transverse location except y = 0.26. The microro-
tation gradient ON/0y near the wavy surface (i.e.,
y < 0.1) or far away from of the wavy surface is nega-
tive, which increases with time, and it becomes positive
in the other region. Thus, the negative gradient ON /0y in
Eq. (9b) indicates the resistance force to decelerate flow
as near wavy surface.

Figs. 7 and 8 plot the axial velocity component u,
temperature 6 as functions of the axial and transverse
coordinates for Gr/Re* = 20n,2 = 5,R =5 and o = 0.1
at t = 0.3. The sinusoidal natures of the velocity and
temperature field along the wavy surface are observed,
which are more evident at a relatively small height
from the surface. The amplitudes of the axial velocity
component tend to increase as the fluid moves down-

Fig. 7. Axial velocity profiles (o = 0.1, Gr/Re? = 20m,R = 5,
A=35,1=03).
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Fig. 8. Temperature profiles (x=0.1,Gr/Re’* =20n,R =5,
A=35t=03).

stream. The peaks of axial velocity component occur
near the troughs of wavy surface (i.e., x = 1,2,3 and 4)
where there are also the troughs of temperature field.
In addition, forced convection is the dominant mode of
heat transfer near the leading edge. And the axial ve-
locity increases monotonically with x, but temperature
decreases, because of the cumulative free convection
effect.

Fig. 9 shows the variation of the transient local
Nusselt number (4/er)1/4Nux for the case of a =0.1,
Gr/Re* = 20m, A = 5, respectively. The transient local
Nusselt number varies periodically. Its mean value de-
creases monotonically with the axial coordinate except
near the leading edge; however, this mean value de-
creases with time. Forced convection controls the heat
transfer mechanism initially, especially near the leading
edge. As the time increases, the free convection effect
becomes more pronounced, increasing the hydrody-
namic and thermal boundary layer thicknesses, and thus
reducing the heat transfer rate. Fig. 9 also shows that,
for 7<0.05, the transient, local Nusselt number
4/ er)l/ *Nu. varies periodically with a frequency equal
to the frequency of the wavy surface. The peaks of the
transient, local heat transfer rate are found to be near
the corresponding peaks of the wavy surface, where the
maximum inviscid free-stream velocity is presented.
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Fig. 9. Transient axial distribution of (4/Gr)"*Nuz (o = 0.1,
Gr/Re* = 20m, A = 5).

However, they shift slightly upstream of the crests of the
wavy surface because of the non-linear convection effect.

The axial distribution of the steady state with local
Nusselt number (4/Gry)"*Nuy for different wavy am-
plitude-wavelength ratio and micropolar parameter is
plotted in Fig. 10. The periodic nature of the local heat
transfer rate is seen clearly in this figure. Yao concluded
[7] that, in the steady state, local Nusselt number is a
constant for the free convection flow along a flat plate in
Newtonian fluids. In a mixed convection boundary
layer, forced convection dominates the heat transfer
near the leading edge, while free convection dominates
the heat transfer as the fluid moves downstream. Hence,
the steady state, local Nusselt number for the flat plate
(oo = 0) decreases and then gradually levels off as the axis
coordinate is increased.

The curves for o = 0.1 and 0.2 in Fig. 10 indicate that
the local Nusselt number distribution consists of two
harmonics. The first harmonic is the leading-order
forced convection solution, and the second harmonic is
due to natural convection. As the axial coordinate in-
creases, the mean value of Nuj(4/Gr;)1/4 is almost kept
constant, except near the leading edge. As shown in Fig.
10, a micropolar fluid with large micropolar parameter
has a low Nusselt number. This phenomenon reflects the
fact that increasing the micropolar parameter results in
an enhancement of the total viscosity in fluid flow, and
thus the heat transfer is retarded.

The axial distribution of (4/Gr;)"*Nuy, with x and R
is plotted in Fig. 11 for Gr/Re* = 20m, 0 = 0.1, B =1,
/=5 and Pr = 1. The total Nusselt number is obtained

0.70

(4/Gr,)"* Nu,

0.40—

0.0 1.0 2.0 3.0 4.0
X

Fig. 10. Steady-state axial distribution of (4/Grs)"*Nuz (Gr/
Re* =20m, 4 =5).

(4/Gr.)"* Nu,,

Fig. 11. Transient axial distribution of (4/Gr:)"*Nuy (2= 0.1,
Gr/Re* = 20m, /. = 5).

by averaging the heat transfer rate over the surface from
the leading edge to o(x) which is expressed in Eq. (12b).
It shows that the total Nusselt number of the wavy
surface decreases with time and x. Further, in transient
and steady states, the Newtonian fluid is found to have
higher averaged heat transfer rate than a micropolar
fluid.
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Fig. 12. Transient axial distribution of (Gr/Re?) ™" (Gr/4x)"/*C;
o =0.1,Gr/Re* = 20m, . = 5).

Fig. 12 shows the growth of the transient skin friction
coefficient for Gr/Re? = 20m, . = 5 and o = 0.1. It shows
that, in a mixed-convection boundary layer, forced
convection dominates over natural convection at smaller
time. Therefore, the skin friction coefficient increases
with time until arriving steady state and shows the
presence of two harmonics under larger time. The peaks
of the first harmonic occur near the peaks of the wavy
surface, and the quantity of amplitude is almost con-
stant as t > 0.02 (i.e., the amplitude does not grow). The
peaks of the second harmonic occur near the troughs of
wavy surface and grow with time until arriving steady
state. This is because the buoyancy term in Eq. (9b)
increases with time and accelerates the fluid along the
surface, thus the second harmonic becomes prominent at
large time. On the other hand, the skin friction coef-
ficient for vortex viscosity parameter R =1 in micro-
polar fluid is smaller than the Newtonian fluid, but as
increasing vortex viscosity parameter to R = 10 the skin
friction coefficient becomes bigger than the Newtonian
fluid.

5. Conclusion

The theory of micropolar fluids has been used to
derive a numerical transient solution for flowing along a
wavy surface in a mixed convection. Prandtl’s transpo-
sition theorem and the spline alternating-direction im-
plicit method have been applied to solve the problem.

The hydrodynamic and thermal boundary layer
thicknesses increase progressively with the time. As the

time increases, the local skin-friction coefficient increases
but the local and averaged heat transfer rates decrease
which shows the presence of two harmonics. Forced
convection dominates the first harmonic at smaller time
or near the leading edge, while free convection domi-
nates the second harmonic as the time increases or fluids
move downstream. In micropolar fluids, the skin friction
coefficient is lower than Newtonian fluids for smaller
vortex viscosity parameter, but higher for larger vortex
viscosity parameter. However, the heat transfer rate
decreases because of smaller axial velocity for micro-
polar fluids. Thus, the heat transfer rate of a micropolar
fluid is smaller than a Newtonian fluid under all cir-
cumstances.
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